
1

TECHNICAL
OVERVIEW

PREPARED FOR

Jason Strohm

Two Sisters in the Wild, LLC

PREPARED BY

Keith Reis

CIS 411 Project Group - PennWest University



2

SUMMARY
This document contains important information about the product: Edge of
Extinction - Virtual Card Game version 2.0. You can find brief overviews regarding
purpose, functions, and a deep-dive into the framework and architecture used to
create the game. With the hope of instilling a basic understanding and knowledge
of how the game was designed.



3

Table of Contents

1-2. Cover/Summary

3. ToC

4. Project Overview

5. Game Engine

a. Graphics

6. Coding Architecture

a. Language
b. OOP-Usage

7. Testing

8-10. Exporting Project (Creating Builds)

11. Functions/Classes

a. GameManager.cs (page 12)
b. Scenes and Loading (ChangeScenes.cs,

HideShowBoards.cs,LeveLoader.cs, Player.cs) (page 13)
c. Game Board (CardRetrievalFromDeck.cs, Draggable.cs,

DoubleClickDescription.cs, HoverClass.cs) (pages 14-16)
d. Card Utilities (Deck.cs, Card.cs, PickDeck.cs) (pages 17-18)
e. Requirements.cs (page 19)
f. CSVParser.cs (page 20)
g. ExitFullScreen.cs (page 21)
h. OpenURL.cs (page 22)
i. ExitFullScreen.cs (page 23)



4

PROJECT OVERVIEW
Our project is a game based on the educational card-game titled ‘Edge of

Extinction’. The focus of the game is to provide players with a fun yet

strategically challenging experience. While also being an educational learning

platform that teaches players about different types of animals, plants,

geographical locations, and other facets of nature and wildlife. Therefore, our

game’s target audience is centred around being used in an educational setting

by teachers and students. We wanted to make the game as easily accessible to

download and play as possible. As well as having a clean UI that is intuitive

enough to quickly learn and begin playing.

As this project has already been previously worked on and attempted by 2

development teams before us, we chose to continue development of it in the

Unity Engine. The editor version we used is 2019.3.12f1. We have exported

the game to an executable program that will be hosted on the card-game’s

home website. We continued following and adhering to the past group’s

coding architecture and design. Mainly their use of OOP(Object-Oriented

Programming) methodology. As we also believe the use of objects and

inheritance was the best and most efficient means of coding and implementing

the necessary components for the game.



5

GAME ENGINE
Our game engine used for development was Unity - a popular choice among

both independent and industry-level game developers. The IDE is developed,

updated, and distributed by Unity Technologies™. Additionally, Unity offers a

fully supported API that allows users to create custom editing tools & scripts.

We collectively decided it would be best to initially continue to expand and fix

issues with the game using the past development team’s editor version:

2019.3.12f1. We decided to test out porting the game to a newer editor

version - 2022.2.14f1. This version is not considered LTS (Long-Term

Supportive) by Unity. Though our group believes this will change in the near

future and it will most likely become LTS.

GRAPHICS ENGINE
We continued usage of Unity’s 3D game engine for development of the card

game. The 3D engine is adaptable and versatile enough to produce all of the

scenes and objects needed for virtualization of Edge of Extinction. It also

boasts built-in connectivity with Visual Studio and C# scripting.

The 3D engine community of Unity is also massively popular and active online.

This was a great help to us, as many issues or questions we’ve run into while

testing or debugging were most likely already solved on the Unity Forums.

Therefore, our development team was able to rely on passionate members of

the community for assistance in solving various problems.

https://forum.unity.com


6

CODE ARCHITECTURE
Our development team’s focus was looking into the previous team’s already

existing coding architecture - and resolving any and all issues found within it.

Extensive testing and planning was required in order for us to define problem

areas, and then designate tasks based on who in our team understood what

solutions could be implemented. Some script files had to be completely

scrapped in order for us to create and apply our own solutions. Though we still

closely followed and adhered to the past group’s usage of OOP

(Object-Oriented Programming) principles when creating new classes.

OOP PRINCIPLES
We used an object-oriented approach for development. Not only is OOP

methodology an industry standard in game development, but also a

With our project goal being the creation of a virtual card game, it makes sense

to use industry-standard for designing games, it’s also also an important

aspect for shortening strain on the resources and time allotted to our team for

completion. Many aspects of the game can be reused as objects. Rather than

having to create new implementations of certain game aspects that are

recurring throughout gameplay. Examples of this are as follows:

● Card Details (ID, Name, Type, pointValue, etc.)

● Card Effects

● Card Descriptions (Sprite, Name, Details & Effects, Action Buttons)

● Player Class (Contains inherited subclasses: ‘Human’ and ‘Computer’).



7

TESTING
Instead of using an external automated testing software, human testing was

our approach to discovering and eliminating any and all bugs. Due to the fact

that we’re creating a game played by humans, it’s ideal to use the human

testing approach. As we want to account for ways in which a human may

approach certain aspects of our game and unintentionally cause errors or bugs

to arise during gameplay.

We also made use of a bug-tracking tool via the Github repository page. The

‘Issues’ tab, allowed us to create individual issues we had found during

development - and categorise them accordingly based on priority levels.

Our group used two specific types of software testing methods that best

suited our current resources and timeframe for completing the game.

- Unit Testing -When we found a line(s) of code that we knew was

responsible for a given bug; we tested those individual components.

Rather than spending the time necessary to test the entire module that

contains said code.

- Regressive Testing - As we made changes to the project’s code, we

wanted to ensure that our current versions of the game worked as

intended/expected. This method of testing ensured that we didn’t

‘regress’ back to versions of our project that suffer from bugs or issues

we’ve previously run into. Instead, the project was always moving

forward - with each fix providing a more stable version than the last.



8

EXPORTING PROJECT
In order to create an executable program of Unity projects, you must build and

package together the entirety of the project.

This can be done through the following steps:

1. Select File -> Build Settings (Shortcut: Ctrl+Shift+B)



9

2. Select Platform -> (PC, Mac, and Linux Standalone)

3. Select Scenes to Include in Build



10

4. Press ‘Build’ or ‘Build And Run’

Advanced Settings: These settings are used for building the project with

specific parameters or options in mind. For example, you may want to select

‘Development Build’ if you wish to get an executable build that can be used

for testing and debugging. By selecting ‘Player Settings’, you can set various

options for the final game built by Unity. A list of such options are highlighted

in the reference image shown below.

FUNCTIONS/CLASSES



11

These sections provide a brief description and technical insight of the various

scripting files contained within the subdirectory ‘Scripts’. Listed below are

important class files and their contained functions, with explanations regarding

their purpose, inputs, outputs, and overall functionality.

We implemented functions as a way to perform specific tasks or calculations

within our game. GIving us the ability to implement many core features and

aspects of the game that require usage of input/output parameters, what data

is returned (if any), and special conditions and constraints

Classes, on the other hand, were implemented and used to define game

objects that have specific attributes and behaviours. The classes section

provides details on the attributes and methods associated with each class, as

well as any inheritance relationships or interfaces that may be relevant.

Overall, the main goal of this critical section of the technical overview is to

provide readers with a comprehensive understanding of our program’s

capabilities. As well as how to use them effectively in any future instances of

development.



12

GAMEMANAGER
The GameManager.cs class within the Scripts directory is a vital component of the
overall program. Acting as the central hub for the entirety of the project. The class
itself contains a wide variety of critical game object functionalities and operations.
While also acting as the foundation for our OOP methodology implementation. A
brief list of said functions and game objects are as follow:

● Creation and instantiation of Player subclass instances
○ Conversion of aforementioned instances into Unity GameObject instances.

This is done to facilitate accessibility, persistence, and graphical rendering.
● Creation, instantiation, and loading of Deck and Card instances via CSVParser.

○ CSVParser breaks down components of Deck and Card and populates
in-game the player’s chosen deck. Populates actionIDs and requirementIDs
for each card in temp deck object also.

○ Attaching Deck and Card instances to Player game objects.
● Game controls via primary loop and supporting functions
● Management of Unity-created game objects and background functions required for

normal Unity program execution.

Overall, you can think of the GameManager as a system warehouse that stores
important game objects and functionalities for core components of the project.



13

SCENES AND LOADING
(ChangeScenes.cs - HideShowBoards.cs - LevelLoader.cs)

These classes provide the necessary background operations of the game.
Facilitating functionalities such as:

● Movement between engine-defined Scenes
● Displaying Canvas and CanvasGroup game objects.
● Loading persistent information across these

A more in-depth look at each class is as follows:

ChangeScene.cs: Changes active game scene to appropriate next scene using the
ChangeScene() function; which takes in a string parameter called sceneName.

HideShowBoards.cs: Brings either Canvas or Game objects to the forefront to
display to user. Objects are initialised and set to their appropriate canvas
groups/individual canvases. Following this, Show*canvas name* functions are used
to display desired boards to the player. This is done by first disabling all other
active canvases, and then setting factors necessary for the desired canvas to be
displayed to true.

LevelLoader.cs: Implements a loading screen between MainMenu and
PickStarterDeck scenes. This is checked by implementing a boolean value called
returnToMenu, and setting it to true or false depending on whether or not the
player is accessing the menu screen. There is also a function called LoadLevel
which calls a routine to load MainMenu as well as the LoadAsynchronously
function to create a timer counter and cause the loading slider to increase based on
said counter.



14

GAME BOARD
(CardRetrievalFromDeck.cs - Draggable.cs -

DoubleClickDescription.cs - HoverClass.cs)

These classes provide the necessary functionalities of moving and inspecting cards
on the game board, such as:

● Ability to click and drag cards to designated areas on the board.
● Double click on a card to pull up a detailed description scene (as well as providing a

button for activating special effect/action if applicable)
● Enable graphical functionality when hovering over cards with the mouse by altering

card sizes.
● Drawing cards and displaying the pulled cards to the player’s hand.
● Destroying game objects

A more in-depth look at each class is as follows:

CardRetrievalFromDeck.cs: Overall, this script handles retrieving cards from the
deck, storing related information about cards drawn, and initialising their relative
sprites. This script facilitates the Draw() function, used in the Player class and it’s
derived subclasses. The function CardDrawRandomizer() is also stored within this
script. Which takes in the parameters for either: Human or Computer, followed by
the current turn classification of pCurrentPlayer. It should also be noted that it is
ensured that a Region type card is always received in the initial first round draw by
both the Human and Computer. This script also contains the setSprite() function,
taking in SpriteRenderer as a parameter. Based on the name of the card, a sprite
will be created with the appropriate texture applied to it.



15

Draggable.cs: This script enables the Human player to click and drag cards. Placing
said cards in their desired and appropriate placements on the game board. A game
object called DraggedInstance is instantiated, which is used to track the object
being selected and dragged. Once the player begins to drag a card, the
requirements for the selected card are checked and a halo glow is assigned to show
the player which panels the card can be dropped in. The functions onDrag() and
onEndDrag() keep track of when a card is picked up, and when it is set down. While
the function outOfCards() is checked at the end of the onEndDrag function.
outOfCards checks to see if the CardDiscarded value is set to false, as well as if
you’ve played your last remaining card in your hand. If these requirements are met,
the player’s turn will end and the computer’s turn will begin.

DoubleClickDescription.cs: The functionality of this script pertains to displaying
information of individual cards when selected by the Player. By double clicking a
card on the game board, a new canvas/scene containing that card’s relative details
will be displayed. It contains the DestroyGameObject() function, which when called
will remove the desired object (such as a card) from the game board if needed. The
OnPointerClick() function will check if a card was clicked twice. If so, it will set the
name, image, and description of the selected card. By using a wide variety of if/else
statements to check what text the game object contains. For example, if
(nameholder.Contains(“Plant”)), it will reset the description text in case there exists
a Plant card with no description. Then it will go through an array of the
PlantPlacement section on the board and match the name to one of the cards
placed by the Player or Computer in said section. ImageOfCard.sprite =
gameObject.GetComponent<SpriteRenderer>().sprite is placed at the end of this
function in in order to place an image of the selected card within the description
scene. At the end of the script is the Description() function. As given by the name,
this function is used for adding in the card description based on if statements that
check the type of the selected card.



16

HoverClass.cs: The main function of this script is for increasing the card size based
on the position of the player’s mouse cursor. For example, the OnMouseEnter()
checks if the cursor is hovering over a card. If it is, then the sorting order of the
game objects is stored - then set to max so that the hovered card always appears
on top when rendered. Finally, the render is transformed to become bigger by using
the following code: Rend.transform.localScale += new Vector3(0.4F, 0.4F); Then,
the OnMouseExit() function will be used once the cursor has stopped hovering over
a card. Resetting the sorting order of the render back to its original value, and using
a negative version of the same render transformation code instead of the
aforementioned positive version.



17

CARD UTILITIES
(Deck.cs - Card.cs - PickDeck.cs)

These classes handle various card-related utilities throughout the game. Both the
Deck and Card scripts provide access to the vast majority of core game information.
These scripts are arguably the most important ones out of the entire project in
regards to providing the core of gameplay.

Deck.cs: A ‘Deck’, should be considered as a named collection of specific Card
objects. Each deck has the following attributes attached to it:

- Identifying string and id (deckName & deckId)
- Unique color (deckColor)
- List of cards contained within the deck (cards)
- Specified player (once selected from PickStarterDeck Scene)

Two players cannot use the same Deck at the same time. Thus if I choose the
‘Clarion River’ Deck, the CPU must choose any of the other 3 decks. Within the
Deck() function, all deck attributes are set to default values. Which are changed
based on the selection of the Player and Computer via the PickStarterDeck Scene.

PickDeck.cs: The four decks included within the game and their referred to
deckNames are as follows:

- Allegheny Forest Deck (allegheny)
- Appalachian Homestead (appalachain)
- Peat Bogs (peat)
- Clarion River (clarion)

As the game currently stands, the player is restricted to choosing the ‘Allegheny
Forest’ Deck. This is due to the fact that implementing card effects for the other 3
Decks did not meet our group’s project scope. Our group did not want to include the
ability to choose other decks in the game without their cards having the correct



18

requirements and card effects. Since the player loses the ability for any strategic
gameplay by choosing decks that have cards without their functioning gameplay
actions.

Card.cs: A ‘Card’ is considered a digital renderization of the physical cards used in
real-world Edge of Extinction matches. It contains specifications for all
informational attributes the physical card would contain. The following attributes
are attached to a singular card:

- Identifying ID, name, and type (cardID, cardName, cardType)
- Associated sprite image of the physical card
- Point value(s) gained or lost when played (pointValue)
- Wide variety of traits & characteristics based on the associated wildlife of

the card (ex. kingdom, division, phylum, family, plantType, animalDiet, etc.)
- Notes or extra information about card (cardNotes)
- List of associated standing/special card effects (reqID & actionID)

A string array is passed by the CSVParser script which reads the associated text
asset information of the card into the Card() function; returning the given card
values. There also exists a default Card() constructor, which initially sets all card
attributes to default values before reading them in from the text asset.

These Card attributes are absolutely integral to accessing information about
specific cards throughout various functions and scripts of the project. Such as
checking which card is in a specific placement on the board via cardName, or
executing an effect on all cards of a specific cardType. Another example is checking
for requirements to play a card based on what type of wildlife has been placed on
the game board.



19

REQUIREMENTS CHECKS
(Requirements.cs)

The Requirements.cs class has been refactored multiple times by past groups as
well as ours. Our main goal when restructuring the class was removing any
redundancy found throughout the code. There were multiple requirements listed
that had been repeated 5-6 times one after the other, and created unnecessary
bloating within the class. These have since been removed, making the class much
more cleaner and organised.

Overall, this class is used to specify and check that the Card object that the Player
(either Human or Computer) is attempting to interact with has its requirements met
prior to interaction (ex. placement on the game board).



20

FILE PARSING
(CSVParser.cs)

File parsing classes such as CSVParser.cs are used to read-in information from
several Comma-Separated-Value document files. These files are found within the
“Assets/Data” project solution directory within Unity.

How File Parsing Works in Edge of Extinction:

By parsing the included files, it populates the necessary information/attributes tied
to game objects such as Deck and Card, as well as important checks for
Requirements and Actions associated with all cards used throughout the game.
This is functional by implementing the usage of the native C# StreamReader class.
Which reads the included CSV files in the Data directory, and returns each row of
the file to a function. Said function breaks down each row into numerous strings.
These given strings are individually delimited with commas, and used in the
creation of the aforementioned game objects and checks. Thus becoming integral
information stored within the associated class instances
(Deck.cs,Card.cs,Requirements.cs,Actions.cs).



21

OPENING URLs
(OpenURL.cs)

This class is what facilitates the ability for players to click buttons throughout the game
that will open links to client-requested websites. The user’s preferred web-browser will
open the link, and redirect them to whatever link is specified by the OnClick() event.

Current links to pages included in the game are as follows:

● Home Page: Links to tswgames.com
● Purchasing Decks: Links to tswgames.com/products/*insert deck name here*
● Review Us: Links to facebook page facebook.com/tswgamesllc

Functions were created for each link, which can be called by implementing them into the
OnClick() event of a menu button through the inspector tab of said button as shown below:



22

EXITING FULLSCREEN
(ExitFullScreen.cs)

The implementation of the functionality provided by the ExitFullScreen.cs class was
specifically requested by the client. Said functionality is that when a user presses a button,
the game changes to windowed mode and allows players to move it around or exit or
minimise out of the game. The chosen key for this was the ‘escape’

This effect was implemented throughout all scenes of the project by adding the script
component for ExitFullScreen.cs to the Main Camera of the game as shown below:



23

ACTION BUTTON
(ActionButton.cs)

This script was created by our group in order to facilitate the functionality needed for
activating cards that have special effects. When the player presses the action button on a
card, a function calledWhatActionIsHappening() will be called to check the card
information and determine what special ability the card holds. It will then begin the
process for the effect by using the OnClick() event to execute the aforementioned function
within the ActionButton script as shown below:


